Counting polyominoes with minimum perimeter

نویسنده

  • Sascha Kurz
چکیده

The number of essentially different square polyominoes of order n and minimum perimeter p(n) is enumerated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Directed-convex Polyominoes According to Their Perimeter

An approach is presented for the enumeration of directed-convex polyominos that are not parallelogram polyominoes and we establish that there are ( 2n n−2 ) with a perimeter of 2n + 4. Finally using known results we prove that there are ( 2n n ) directed-convex polyominos with a perimeter of 2n + 4.

متن کامل

The Site Perimeter of Bargraphs

The site perimeter enumeration of polyominoes that are both columnand row-convex is a well-understood problem that always yields algebraic generating functions. Counting more general families of polyominoes is a far more difficult problem. Here Mireille BousquetMélou and Andrew Rechnitzer enumerate (by their site perimeter) the simplest family of polyominoes that are not fully convex—bargraphs....

متن کامل

Steep polyominoes, q-Motzkin numbers and q-Bessel functions

We introduce three deenitions of the q-analogs of Motzkin numbers and illustrate some combinatorial interpretations of these q-numbers. We relate the rst class of q-numbers to the steep parallelogram polyominoes' generating function according to their width, perimeter and area. We show that this generating function is the quotient of two q-Bessel functions. The second class of q-Motzkin numbers...

متن کامل

ar X iv : 0 71 1 . 05 82 v 1 [ m at h . C O ] 5 N ov 2 00 7 PERMUTATIONS DEFINING CONVEX PERMUTOMINOES

A permutomino of size n is a polyomino determined by particular pairs (π1, π2) of permutations of size n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. Here we determine the combinatorial properties and, in particular, the characterization for the permutations defining convex permutominoes. Using such a characterization, these permutations can be uniquely represented in terms of the so called square...

متن کامل

Polyominoes with minimum site-perimeter and full set achievement games

The site-perimeter of a polyomino is the number of empty cells connected to the polyomino by an edge. A formula for the minimum site-perimeter with a given cell size is found. This formula is used to show the effectiveness of a simple random strategy in polyomino set achievement games.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ars Comb.

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2008